3.208 \(\int x^3 (c+a^2 c x^2)^{3/2} \tan ^{-1}(a x) \, dx\)

Optimal. Leaf size=217 \[ \frac{17 c^{3/2} \tanh ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{a^2 c x^2+c}}\right )}{560 a^4}-\frac{1}{42} a c x^5 \sqrt{a^2 c x^2+c}-\frac{23 c x^3 \sqrt{a^2 c x^2+c}}{840 a}+\frac{3 c x \sqrt{a^2 c x^2+c}}{112 a^3}+\frac{1}{7} a^2 c x^6 \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)+\frac{8}{35} c x^4 \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)+\frac{c x^2 \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)}{35 a^2}-\frac{2 c \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)}{35 a^4} \]

[Out]

(3*c*x*Sqrt[c + a^2*c*x^2])/(112*a^3) - (23*c*x^3*Sqrt[c + a^2*c*x^2])/(840*a) - (a*c*x^5*Sqrt[c + a^2*c*x^2])
/42 - (2*c*Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/(35*a^4) + (c*x^2*Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/(35*a^2) + (8*c
*x^4*Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/35 + (a^2*c*x^6*Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/7 + (17*c^(3/2)*ArcTanh
[(a*Sqrt[c]*x)/Sqrt[c + a^2*c*x^2]])/(560*a^4)

________________________________________________________________________________________

Rubi [A]  time = 0.764624, antiderivative size = 217, normalized size of antiderivative = 1., number of steps used = 31, number of rules used = 7, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.318, Rules used = {4950, 4946, 4952, 321, 217, 206, 4930} \[ \frac{17 c^{3/2} \tanh ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{a^2 c x^2+c}}\right )}{560 a^4}-\frac{1}{42} a c x^5 \sqrt{a^2 c x^2+c}-\frac{23 c x^3 \sqrt{a^2 c x^2+c}}{840 a}+\frac{3 c x \sqrt{a^2 c x^2+c}}{112 a^3}+\frac{1}{7} a^2 c x^6 \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)+\frac{8}{35} c x^4 \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)+\frac{c x^2 \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)}{35 a^2}-\frac{2 c \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)}{35 a^4} \]

Antiderivative was successfully verified.

[In]

Int[x^3*(c + a^2*c*x^2)^(3/2)*ArcTan[a*x],x]

[Out]

(3*c*x*Sqrt[c + a^2*c*x^2])/(112*a^3) - (23*c*x^3*Sqrt[c + a^2*c*x^2])/(840*a) - (a*c*x^5*Sqrt[c + a^2*c*x^2])
/42 - (2*c*Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/(35*a^4) + (c*x^2*Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/(35*a^2) + (8*c
*x^4*Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/35 + (a^2*c*x^6*Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/7 + (17*c^(3/2)*ArcTanh
[(a*Sqrt[c]*x)/Sqrt[c + a^2*c*x^2]])/(560*a^4)

Rule 4950

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Dist[
d, Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcTan[c*x])^p, x], x] + Dist[(c^2*d)/f^2, Int[(f*x)^(m + 2)*(d + e*
x^2)^(q - 1)*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[q, 0] &&
 IGtQ[p, 0] && (RationalQ[m] || (EqQ[p, 1] && IntegerQ[q]))

Rule 4946

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)^(
m + 1)*Sqrt[d + e*x^2]*(a + b*ArcTan[c*x]))/(f*(m + 2)), x] + (Dist[d/(m + 2), Int[((f*x)^m*(a + b*ArcTan[c*x]
))/Sqrt[d + e*x^2], x], x] - Dist[(b*c*d)/(f*(m + 2)), Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x], x]) /; FreeQ[{a,
 b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && NeQ[m, -2]

Rule 4952

Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcTan[c*x])^p)/(c^2*d*m), x] + (-Dist[(b*f*p)/(c*m), Int[((f*x)^(m -
1)*(a + b*ArcTan[c*x])^(p - 1))/Sqrt[d + e*x^2], x], x] - Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)^(m - 2)*(a +
b*ArcTan[c*x])^p)/Sqrt[d + e*x^2], x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && Gt
Q[m, 1]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 4930

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[((d + e*x^2)^
(q + 1)*(a + b*ArcTan[c*x])^p)/(2*e*(q + 1)), x] - Dist[(b*p)/(2*c*(q + 1)), Int[(d + e*x^2)^q*(a + b*ArcTan[c
*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && NeQ[q, -1]

Rubi steps

\begin{align*} \int x^3 \left (c+a^2 c x^2\right )^{3/2} \tan ^{-1}(a x) \, dx &=c \int x^3 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x) \, dx+\left (a^2 c\right ) \int x^5 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x) \, dx\\ &=\frac{1}{5} c x^4 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)+\frac{1}{7} a^2 c x^6 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)+\frac{1}{5} c^2 \int \frac{x^3 \tan ^{-1}(a x)}{\sqrt{c+a^2 c x^2}} \, dx-\frac{1}{5} \left (a c^2\right ) \int \frac{x^4}{\sqrt{c+a^2 c x^2}} \, dx+\frac{1}{7} \left (a^2 c^2\right ) \int \frac{x^5 \tan ^{-1}(a x)}{\sqrt{c+a^2 c x^2}} \, dx-\frac{1}{7} \left (a^3 c^2\right ) \int \frac{x^6}{\sqrt{c+a^2 c x^2}} \, dx\\ &=-\frac{c x^3 \sqrt{c+a^2 c x^2}}{20 a}-\frac{1}{42} a c x^5 \sqrt{c+a^2 c x^2}+\frac{c x^2 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{15 a^2}+\frac{8}{35} c x^4 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)+\frac{1}{7} a^2 c x^6 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)-\frac{1}{35} \left (4 c^2\right ) \int \frac{x^3 \tan ^{-1}(a x)}{\sqrt{c+a^2 c x^2}} \, dx-\frac{\left (2 c^2\right ) \int \frac{x \tan ^{-1}(a x)}{\sqrt{c+a^2 c x^2}} \, dx}{15 a^2}-\frac{c^2 \int \frac{x^2}{\sqrt{c+a^2 c x^2}} \, dx}{15 a}+\frac{\left (3 c^2\right ) \int \frac{x^2}{\sqrt{c+a^2 c x^2}} \, dx}{20 a}-\frac{1}{35} \left (a c^2\right ) \int \frac{x^4}{\sqrt{c+a^2 c x^2}} \, dx+\frac{1}{42} \left (5 a c^2\right ) \int \frac{x^4}{\sqrt{c+a^2 c x^2}} \, dx\\ &=\frac{c x \sqrt{c+a^2 c x^2}}{24 a^3}-\frac{23 c x^3 \sqrt{c+a^2 c x^2}}{840 a}-\frac{1}{42} a c x^5 \sqrt{c+a^2 c x^2}-\frac{2 c \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{15 a^4}+\frac{c x^2 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{35 a^2}+\frac{8}{35} c x^4 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)+\frac{1}{7} a^2 c x^6 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)+\frac{c^2 \int \frac{1}{\sqrt{c+a^2 c x^2}} \, dx}{30 a^3}-\frac{\left (3 c^2\right ) \int \frac{1}{\sqrt{c+a^2 c x^2}} \, dx}{40 a^3}+\frac{\left (2 c^2\right ) \int \frac{1}{\sqrt{c+a^2 c x^2}} \, dx}{15 a^3}+\frac{\left (8 c^2\right ) \int \frac{x \tan ^{-1}(a x)}{\sqrt{c+a^2 c x^2}} \, dx}{105 a^2}+\frac{\left (3 c^2\right ) \int \frac{x^2}{\sqrt{c+a^2 c x^2}} \, dx}{140 a}+\frac{\left (4 c^2\right ) \int \frac{x^2}{\sqrt{c+a^2 c x^2}} \, dx}{105 a}-\frac{\left (5 c^2\right ) \int \frac{x^2}{\sqrt{c+a^2 c x^2}} \, dx}{56 a}\\ &=\frac{3 c x \sqrt{c+a^2 c x^2}}{112 a^3}-\frac{23 c x^3 \sqrt{c+a^2 c x^2}}{840 a}-\frac{1}{42} a c x^5 \sqrt{c+a^2 c x^2}-\frac{2 c \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{35 a^4}+\frac{c x^2 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{35 a^2}+\frac{8}{35} c x^4 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)+\frac{1}{7} a^2 c x^6 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)-\frac{\left (3 c^2\right ) \int \frac{1}{\sqrt{c+a^2 c x^2}} \, dx}{280 a^3}-\frac{\left (2 c^2\right ) \int \frac{1}{\sqrt{c+a^2 c x^2}} \, dx}{105 a^3}+\frac{c^2 \operatorname{Subst}\left (\int \frac{1}{1-a^2 c x^2} \, dx,x,\frac{x}{\sqrt{c+a^2 c x^2}}\right )}{30 a^3}+\frac{\left (5 c^2\right ) \int \frac{1}{\sqrt{c+a^2 c x^2}} \, dx}{112 a^3}-\frac{\left (3 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-a^2 c x^2} \, dx,x,\frac{x}{\sqrt{c+a^2 c x^2}}\right )}{40 a^3}-\frac{\left (8 c^2\right ) \int \frac{1}{\sqrt{c+a^2 c x^2}} \, dx}{105 a^3}+\frac{\left (2 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-a^2 c x^2} \, dx,x,\frac{x}{\sqrt{c+a^2 c x^2}}\right )}{15 a^3}\\ &=\frac{3 c x \sqrt{c+a^2 c x^2}}{112 a^3}-\frac{23 c x^3 \sqrt{c+a^2 c x^2}}{840 a}-\frac{1}{42} a c x^5 \sqrt{c+a^2 c x^2}-\frac{2 c \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{35 a^4}+\frac{c x^2 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{35 a^2}+\frac{8}{35} c x^4 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)+\frac{1}{7} a^2 c x^6 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)+\frac{11 c^{3/2} \tanh ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{c+a^2 c x^2}}\right )}{120 a^4}-\frac{\left (3 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-a^2 c x^2} \, dx,x,\frac{x}{\sqrt{c+a^2 c x^2}}\right )}{280 a^3}-\frac{\left (2 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-a^2 c x^2} \, dx,x,\frac{x}{\sqrt{c+a^2 c x^2}}\right )}{105 a^3}+\frac{\left (5 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-a^2 c x^2} \, dx,x,\frac{x}{\sqrt{c+a^2 c x^2}}\right )}{112 a^3}-\frac{\left (8 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-a^2 c x^2} \, dx,x,\frac{x}{\sqrt{c+a^2 c x^2}}\right )}{105 a^3}\\ &=\frac{3 c x \sqrt{c+a^2 c x^2}}{112 a^3}-\frac{23 c x^3 \sqrt{c+a^2 c x^2}}{840 a}-\frac{1}{42} a c x^5 \sqrt{c+a^2 c x^2}-\frac{2 c \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{35 a^4}+\frac{c x^2 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{35 a^2}+\frac{8}{35} c x^4 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)+\frac{1}{7} a^2 c x^6 \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)+\frac{17 c^{3/2} \tanh ^{-1}\left (\frac{a \sqrt{c} x}{\sqrt{c+a^2 c x^2}}\right )}{560 a^4}\\ \end{align*}

Mathematica [A]  time = 0.165537, size = 119, normalized size = 0.55 \[ \frac{51 c^{3/2} \log \left (\sqrt{c} \sqrt{a^2 c x^2+c}+a c x\right )+a c x \left (-40 a^4 x^4-46 a^2 x^2+45\right ) \sqrt{a^2 c x^2+c}+48 c \left (5 a^2 x^2-2\right ) \left (a^2 x^2+1\right )^2 \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)}{1680 a^4} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*(c + a^2*c*x^2)^(3/2)*ArcTan[a*x],x]

[Out]

(a*c*x*Sqrt[c + a^2*c*x^2]*(45 - 46*a^2*x^2 - 40*a^4*x^4) + 48*c*(1 + a^2*x^2)^2*(-2 + 5*a^2*x^2)*Sqrt[c + a^2
*c*x^2]*ArcTan[a*x] + 51*c^(3/2)*Log[a*c*x + Sqrt[c]*Sqrt[c + a^2*c*x^2]])/(1680*a^4)

________________________________________________________________________________________

Maple [C]  time = 0.914, size = 199, normalized size = 0.9 \begin{align*}{\frac{c \left ( 240\,\arctan \left ( ax \right ){x}^{6}{a}^{6}-40\,{a}^{5}{x}^{5}+384\,\arctan \left ( ax \right ){x}^{4}{a}^{4}-46\,{a}^{3}{x}^{3}+48\,\arctan \left ( ax \right ){a}^{2}{x}^{2}+45\,ax-96\,\arctan \left ( ax \right ) \right ) }{1680\,{a}^{4}}\sqrt{c \left ( ax-i \right ) \left ( ax+i \right ) }}-{\frac{17\,c}{560\,{a}^{4}}\sqrt{c \left ( ax-i \right ) \left ( ax+i \right ) }\ln \left ({(1+iax){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}}-i \right ){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}}+{\frac{17\,c}{560\,{a}^{4}}\sqrt{c \left ( ax-i \right ) \left ( ax+i \right ) }\ln \left ({(1+iax){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}}+i \right ){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a^2*c*x^2+c)^(3/2)*arctan(a*x),x)

[Out]

1/1680*c/a^4*(c*(a*x-I)*(a*x+I))^(1/2)*(240*arctan(a*x)*x^6*a^6-40*a^5*x^5+384*arctan(a*x)*x^4*a^4-46*a^3*x^3+
48*arctan(a*x)*a^2*x^2+45*a*x-96*arctan(a*x))-17/560*c/a^4*(c*(a*x-I)*(a*x+I))^(1/2)*ln((1+I*a*x)/(a^2*x^2+1)^
(1/2)-I)/(a^2*x^2+1)^(1/2)+17/560*c/a^4*(c*(a*x-I)*(a*x+I))^(1/2)*ln((1+I*a*x)/(a^2*x^2+1)^(1/2)+I)/(a^2*x^2+1
)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a^2*c*x^2+c)^(3/2)*arctan(a*x),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.86986, size = 285, normalized size = 1.31 \begin{align*} \frac{51 \, c^{\frac{3}{2}} \log \left (-2 \, a^{2} c x^{2} - 2 \, \sqrt{a^{2} c x^{2} + c} a \sqrt{c} x - c\right ) - 2 \,{\left (40 \, a^{5} c x^{5} + 46 \, a^{3} c x^{3} - 45 \, a c x - 48 \,{\left (5 \, a^{6} c x^{6} + 8 \, a^{4} c x^{4} + a^{2} c x^{2} - 2 \, c\right )} \arctan \left (a x\right )\right )} \sqrt{a^{2} c x^{2} + c}}{3360 \, a^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a^2*c*x^2+c)^(3/2)*arctan(a*x),x, algorithm="fricas")

[Out]

1/3360*(51*c^(3/2)*log(-2*a^2*c*x^2 - 2*sqrt(a^2*c*x^2 + c)*a*sqrt(c)*x - c) - 2*(40*a^5*c*x^5 + 46*a^3*c*x^3
- 45*a*c*x - 48*(5*a^6*c*x^6 + 8*a^4*c*x^4 + a^2*c*x^2 - 2*c)*arctan(a*x))*sqrt(a^2*c*x^2 + c))/a^4

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \left (c \left (a^{2} x^{2} + 1\right )\right )^{\frac{3}{2}} \operatorname{atan}{\left (a x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a**2*c*x**2+c)**(3/2)*atan(a*x),x)

[Out]

Integral(x**3*(c*(a**2*x**2 + 1))**(3/2)*atan(a*x), x)

________________________________________________________________________________________

Giac [A]  time = 1.15812, size = 246, normalized size = 1.13 \begin{align*} \frac{{\left (\frac{7 \,{\left (3 \,{\left (a^{2} c x^{2} + c\right )}^{\frac{5}{2}} - 5 \,{\left (a^{2} c x^{2} + c\right )}^{\frac{3}{2}} c\right )}}{a^{2} c} + \frac{15 \,{\left (a^{2} c x^{2} + c\right )}^{\frac{7}{2}} - 42 \,{\left (a^{2} c x^{2} + c\right )}^{\frac{5}{2}} c + 35 \,{\left (a^{2} c x^{2} + c\right )}^{\frac{3}{2}} c^{2}}{a^{2} c^{2}}\right )} \arctan \left (a x\right )}{105 \, a^{2}} - \frac{\sqrt{a^{2} c x^{2} + c}{\left (2 \,{\left (20 \, a^{4} c x^{2} + 23 \, a^{2} c\right )} x^{2} - 45 \, c\right )} x + \frac{51 \, c^{\frac{3}{2}} \log \left ({\left | -\sqrt{a^{2} c} x + \sqrt{a^{2} c x^{2} + c} \right |}\right )}{{\left | a \right |}}}{1680 \, a^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a^2*c*x^2+c)^(3/2)*arctan(a*x),x, algorithm="giac")

[Out]

1/105*(7*(3*(a^2*c*x^2 + c)^(5/2) - 5*(a^2*c*x^2 + c)^(3/2)*c)/(a^2*c) + (15*(a^2*c*x^2 + c)^(7/2) - 42*(a^2*c
*x^2 + c)^(5/2)*c + 35*(a^2*c*x^2 + c)^(3/2)*c^2)/(a^2*c^2))*arctan(a*x)/a^2 - 1/1680*(sqrt(a^2*c*x^2 + c)*(2*
(20*a^4*c*x^2 + 23*a^2*c)*x^2 - 45*c)*x + 51*c^(3/2)*log(abs(-sqrt(a^2*c)*x + sqrt(a^2*c*x^2 + c)))/abs(a))/a^
3